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USING BIWEIGHT M-ESTIMATES IN THE TWO-SAMPLE PROBLEM
PART 1: SYMMETRIC POPULATIONS

Karen Kafadar

Statistical Engineering Division
National Bureau of Standards
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ABSTRACT

We propose replacing the usual Student's-t statistic, which

tests for equality of means of two distributions and is used to

construct a confidence interval for the difference, by a

biweight-"t" statistic. The biweight-"t" is a ratio of the

difference of the biweight estimates of location from the two

samples to an estimate of the standard error of this difference.

Three forms of the denominator are evaluated: weighted variance

estimates using both pooled and unpooled scale estimates, and

unweighted variance estimates using an unpooled scale estimate.

Monte Carlo simulations reveal that resulting confidence intervals

are highly efficient on moderate sample sizes, and that nominal

levels are nearly attained, even when considering extreme

percentage points.

1. INTRODUCTION

The use o f Student's t in constructing confidence intervals

for the difference in location of two populations is a common

practice. It is well known that this procedure is uniformly most

powerful unbiased when the underlying populations follow Gaussian
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1884 KAFADAR

distributions with the same variance (Lehmann 1959). When the

distributions are in fact even slightly stretched-tailed, however,

studies show that, while the Student's t interval nearly maintains

its validity under the null hypothesis (Yuen and Dixon 1973, Lee

and D'Agostino 1976), the power may be substantially reduced (Yuen

and Dixon 1973). (More recently, see Benjamini 1980 for conditions

under which one-sample Student's t is conservative.) In order to

achieve "robustness of efficiency" in addition to "robustness of

validity" (as defined in Tukey and McLaughlin 1963), this study

proposes the use of biweights in a two-sample "t"-like statistic,

which we shall call biweight-"t". The two-sample problem raises

the issues of combining information on scale of the data and on

variance of the numerator of biweight-"t". We shall attempt to

judge when such borrowing of scale information may be justified.

This report concentrates on small to moderate sizes of samples from

symmetric populations; the unsymmetric case is treated in a

forthcoming paper. Section 2 deals with the case of equal sample

sizes. Section 3 considers unequal sample sizes, for which

variance estimates may be weighted by their sample sizes. Section

4 examines the performance of biweight-"t" when the samples have

different scales. A brief comparison of biweight-"t" intervals

with other familiar procedures is made in Section 5, and Section 6

concludes with an example and strategies for the two-sample case.

2. EQUAL SAMPLE SIZES.

2.1 Form of two-sample biweight-"t" and concepts.

Let xll,...,Xnj,j - Fj((x-Uj)/oj), j - 1,2, denote samples

from two symmetric populations. Then the two-sample biweight-"t"

takes the form:

t"bi - (TI-T 2 )/S

where each Tj is a biweight estimate of location and the squared

denominator estimates the variance of the numerator:

S
2 

- Var (TI-T 2 ).

For a definition of the biweight and its associated variance, the

reader is referred to Mosteller and Tukey (1977). For a single



USING BIWEIGHT M-ESTIMATES. I 1885

sample, Yl,''.,Yn, the only major difference between their

calculation of the biweight estimate of location and that used

here is in the choice of scale: 6MAD (median absolute deviation)

has been replaced by (6"sbi), where

{uk} 
= 

(ul .... un) 
= 

((yk-median)/9
"
MA

D }

Sbi
2 

. n-q({uk})
n n

q(tuki) .I T2( k)/{[ T'(4k)]max [1, -1+ Z n'60]} (1)
k=1 k=l k=i

and the psi function is given by

T(u) = u(l-u
2
)
2 

= u'w(u) , lul !

= 0 , else.

One then solves for T iteratively via the equation

T(h) = " Ykw(uk)/ _ w(uk), uk [Yk - T(hl))/(6"sbi)]. (2)

The iteration starts with the median and ceases when the change is

less than one part in the fourth decimal place. An estimate of the

variance of T may be obtained from a finite-sample approximation to

the theoretical asymptotic variance (cf. Huber 1981, p. 45):

ST
2 

= Var(T) = q({ukj) (3)

where the fuki are defined in (2). (The motivation for these

changes is discussed in Kafadar 1981, henceforth referred to as

[K811.)

When we have two samples, we compute T and ST for each sample.

If we denote these by Tj and Sj (j-1,2), our two-sample

biweight-"t" statistic then takes the form

t" - (TI - T2 )/(SI
2 

+ S2 2)I/2 (4)
The variance estimates Sj2 will be weighted by sample size in

Section 3. In the remaining sections, we will drop the subscript

on "t"bi, as the form of "t" will always involve the biweight

estimates as defined above.

2.2 Evaluation criteria.

Performance of biweight-"t" will be evaluated on three

different distributions:

0 Gaussian
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o One-Wild (n-I observations from N(0,i).

I unidentified observation from N(0,100))

o Slash (N(0,1) deviate / independent Uniform[O,1] deviate).

These three situations are likely to cover a reasonably broad range

of stretched-tailed behavior (Rogers and Tukey 1972).

Robustness of efficiency may be evaluated in several ways. In

this study, the success of biweight-"t" will be measured primarily

in terms of "efficiency" of the expected confidence inter':al length

(ECIL), i.e.,

eff(.a) - [ECILmin(a)/ECILactual(cl)]
2

where ECILactual(a) was defined by Gross (1976) as

ECILactual(0) = 2(a/2 %-point of "t")'ave(denominator of "t"),

and ECILmin(a) is the shortest confidence interval we could expect

for the given situation at hand. For the Gaussian, these are, of

course, Student's t intervals, an approximation, derived in [K81],

is used for ECILmin(ci) in the One-Wild and Slash situations.

Furthermore, for practical ease of use, we wish to approximate

the distribution of biweight-"t" by one from a standard family of

distributions. The most likely candidate here is Student's r, with

some chosen number of degrees of freedom. This chosen number may

be determined by comparing the calculated percent point of "t" to a

Student's t table; i.e., the matching of Ct critical point, a) to

(degrees of freedom). The critical points of the distribution were

all computed via a Monte Carlo swindle, the details of which may be

found in Kafadar (1979). The sets of samples were those used in

the Princeton Robustness Study (Andrews et al. 1972), each

simulated situation involved either 640 or 1000 samples of sizes 5,

10, and 20.

2.3 Asymptotic Distribution of "t".

That "t" of (4) has an asymptotic Gaussian distribution is

clear by the following argument: for the Jth population,

nl/2(Tj-uj) -2- N[O, EjV2/(EjV')
2 ]
j
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where the subscript of E denotes the distribution; e.g.,

EIV 2 - fT2[(x-Tl)/(csl)]dFl(x) (5)

for an arbitrary constant c (e.g., c-6 in (2)). Hence,

nl/2[(TI-T2)-(Pl-P21J -2 N[0,31 EjT2/(EjT')2].

Since (cf. Carroll 1978)

n.Sj2 --. EjT2/(EjT'

we have by Slutsky's theorem that

[Tj-T2)-(l-U2)]/(SI2 +S2 211/2 _- N(0,1). (6)

2.4 Borrowing Scales.

Since each of the biweights in the numerator and each of the

variance estimates in the denominator of "t" requires an estimate

of E-ale, we may consider a pooled estimate if we believe that both

samples have common scale. As shown in [K811, such a pooled

estimate in the one-sample "t" can substantially reduce the

variability in our results.

Table I gives the results of two-sample "t" when both samples

Table I
Biweight-"t" with pooled scales (F 1 = F2 )

tail Gaussiap One-Wild Slash

-re= -p dF ef -p_ ae etr %-pt or err

A) ni=n2-20

.05 1.663 71.1 97.4 1.662 91.0 95.0 1.677 47.8 69.4

.025 2.002 57.9 97.3 1.996 67.2 95.0 2.004 54.7 71.2

.001 3.279 43.9 96.5 3.290 43.3 94.3 3.228 62.2 78.6

.0001 4.080 41.9 96.9 4.111 38.7 93.3 3.984 55.8 81.6

.00001 4.813 41.4 97.1 4.894 36.8 91.4 4.720 49.5 82.1

B) nlfn 2 f10

'.05 1.692 33.3 93.7 1.693 32.7 66.6 1.700 28.4 70.9

.025 2.053 26.8 93.5 2.052 27.0 86.9 2.020 40.8 75.5

.001 3.537 20.7 93.0 3.571 19.3 86.7 3.277 46.5 92.7

.0001 4.546 19.9 93.4 5.054 16.9 84.0 4.341 33.6 99.8

.00001 5.581 19.6 93.8 5.955 16.0 81.5 4.923 35.4 101.5

C) nin 2 -5

.05 1.849 8.4 91.1 1.769 13.2 60.5 1.790 11.4 68.1

.025 2.348 7.3 86.9 2.248 9.4 59.4 2.269 8.8 77.7

.001 7.267 4.0 34.5 6.483 4.5 32.3 7.927 3.7 113.1

.0001 16.658 3.6 13.5 16.326 8.7 12.1 28.573 2.9 47.0

.00001 25.061 3.9 11.4 22.755 4.1 14.0 66.471 2.7 1.8
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have the same size and underlying distribution. (Additional

percent points are available fror the author.) Both biweights in

the numerator have been scaled by Sbor, where

Sbor - [(nl+n2).q(tuij, ui2)] /
2  

(7)

uij = (xij-Tj)/(9.s 
0 ))

sj(0) md dxj-Tj(
0
), Tj(O) = m~d xij

The subscript refers to a scale estiiate which "borrows" widt,

information from more than one sample.

Table I reveals extremely high performance for ni ; 10. In

particular, the resulting confidence intervals for the Gaussian are

trivially less efficient than if we knew the true underlying

distribution (93% or higher) and are seldom more than 20Z wider

than the minimum ECIL for any situation. Furthermore, we are

entitled to the full degrees of freedom ir. our approximatio to a

Student's t distribution, across a broad range of a-levels.

To be conservative, we might wish to approximate "t" by a

Student's t on nine-tenths of the nominal degrees of freedom (ndf =

nl+n 2-2). For a > .01 and ni > 10, the actual ertir rate is only

sli6htly smaller than the niominal (no less than 85% of the

nominal). As we go further into the tails, however, the actual

error Lates may be as low as 30% of the nominal (even lower for

Slash, n-i0). While the robustness of classical procedures for

extreme a-levels has not been investigated, a comparison with the

values in Lee and D'Agostino (1976) indicates that this procedure

is highly robust of validity at a - .05, presumably this robustness

extends to the extreme a-levels as well.

2.5 Different distributions: separate scale estimates.

All three distributions in this study are derived from the

Gaussian with unit variance. This fact, however, does not imply

that a pooled scale is appropriate when our samples come from

different populations, as Table II(A) reveals. When our two

samples do not both have the same underlying distributional shape,

ECIL efficiency is still high, but the equivalent degrees of
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Table II
Biweight-"t" with pooled and unpooled scales (FI*F 2 )

tail Gaussian One-Wild Gaussian Slash One-Wild Slasharea "I a_ ert a-o el_

A) Pooled Scales

1) ui- n 2-20

.05 1.665 76.1 96.1 1.734 17.9 91.6 1.725 20.0 87.6

.025 2.001 58.9 96.0 2.090 19.4 93.3 2.072 22.4 90.0

.001 3.303 41.0 94.9 3.523 21.3 96.4 3.456 24.7 94.7

.0001 4.125 37.5 93.7 4.468 21.7 96.8 4.376 24.3 95.3

.00001 4.921 35.5 92.3 5.389 22.3 96.7 5.298 24.0 94.5

2) nlln2-10

.05 1.772 12.9 99.0 1.759 14.3 92.0 1.749 15.6 84.4

.025 2.171 12.4 97.1 2.125 15.5 94.6 2.105 17.5 87.4

.001 3.902 12.3 89.7 3.695 15.8 98.5 3.631 17.4 92.5

.0001 5.176 12.6 85.2 4.943 14.4 91.7 4.895 14.9 84.8

.00001 6.557 12.7 81.2 6.343 13.7 82.3 6.361 13.7 74.2

3) nl=n2-5

.05 2.213 3.5 54.7 2.163 3.8 62.7 1.975 5.5 50.8

.025 3.137 3.1 42.5 3.005 3.4 58.2 2.641 4.6 50.8

.001 38.305 1.8 1.2 25.437 2.0 9.1 11.178 2.9 31.6

.0001 84.351 2.0 0.5 96.043 2.0 1.0 28.161 2.9 5.8

.00001 130.382 2.3 0.5 166.625 2.4 0.5 48.053 3.0 3.7

8) Unpooled Scales

1) nl=n 2 =20

.05 1.672 56.7 95.7 1.703 27.2 72.9 1.694 32.1 72.6

.025 2.010 49.2 95.6 2.041 30.4 74.9 2.028 36.1 74.7

.001 3.316 38.6 94.5 3.368 31.9 80.9 3.327 37.1 81.7

.0001 4.142 36.1 93.3 4.251 29.3 81.9 4.157 34.9 84.4

.00001 4.940 34.7 91.9 5.145 27.5 81.3 4.962 33.7 86.1

2) n1-n2=10

.05 1.785 11.8 97.1 1.768 13.3 73.5 1.760 14.2 71.7

.025 2.186 11.7 95.2 2.122 15.8 76.7 2.111 16.9 74.8
.001 3.924 12.1 88.2 3.681 16.1 80.1 3.662 16.6 78.2
.0001 5.196 12.4 84.1 4.937 14.5 74.2 4.958 14.3 71.0
.00001 6.574 12.6 80.4 6.349 13.4 66.3 6.439 13.3 62.2

freedom is low. This not surprising, for (7) is designed to

estimate a common scale. A comparison of the distributions based

on a different characteristic of width, such as a pseudo-variance

quantity, shows that the Slash is considerably wider than either

the Gaussian or the One-Wild (cf. Rogers and Tukey 1972).

The scale estimate (7) borrows from both samples and is used

in four places in our "t"-statistic. In general, of course, we

shall not know when we are entitled to borrow. More importantly,

this paoled scale violates the independence assumption in the

numerator. It is true that the asymptotic distribution (6) depends

L ..
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only upon the consistency (not the dependence) of the scale

estimates in the numerator (T1 -T2). However, we shall be applying

this result to relatively small sample sizes. While the dependence

between numerator and demoninator did not affect the efficiency of

a biweight-"t" in the one-sample problem (cf. [K81]), it is not

clear how the increased dependence in the numerator of "t" will

alter its distribution on finite sample sizes.

To illustrate the effect of eliminating this dependence

between the variables in the numerator, Panel B of Table II shows

the results based on unpooled scales. Curiously, despite the

incompatibility of scales in the Gaussian-Slash and Gaussian-One

Wild pairs, biweight-"t" with pooled scales gives higher ECIL

efficiency but slightly less degrees of freedom when nl-n 2=20.

Overall, we could be fairly confident in a comparison of two-sample

"t" to a Student's t on U.9(ndf), if we knew when and when not to

borrow.

One criterion on which to base a decision applies a weight

function to the logarithms of the scale estimates. This is

explored in Kafadar (1980); preliminary results on small sample

sizes are encouraging. Although formal tests of equal variances

are beyond the scope of this paper, one might decide to borrow on

the basis of the relative sizes of Sbi for the two samples. In the

absense of a formal test, overall we conclude that "t" based on

pooled scales allows roughly .9(ndf) for all but the extreme

a-levels, and roughly .8(ndf) for the unpooled case.

When nl=n 2-5, degrees of freedom are substantially lower than

the nominal 8, and ECIL efficiency is often below 50%, even for the

Gaussian case, where the biweight typically performs well. An

explanation for this is explored in [K81]: the occasional presence

of one or more observations which receive zero weight will lead to

misleading estimates of scale, thereby affecting the distribution

of "t". For small samples, the distribution of "t" can be

characterized much more usefully by conditioning on the values ot

the sum of the biweight weights. These conditional results will

not be shown here but are available from the author.
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3. UNEQUAL SAMPLE SIZES.

This case is treated separately, because of the dependence of

the variance estimates on sample size in the denominator.

3.1 Asymptotic Distribution of analogous two-sample statistic.

If we believe that our biweights in the numerator have the

same variance, a common assumption in the usual two-sample

approach, we may wish to pool our variance estimates in a

borrowed (via mean squares) denominator:

2

Var(TI-T 2) = Shot
2 
= [(nl+n 2-2)-linj(nj-1)Sj

2
](nl-l+n 2-1). (8)

j=l

A borrowed-"t" then takes the form:

"t"bor = [(T1-T2)-(PIJ-2)1/Sbor (9)

In computing Tj and Sj in (8) and (9), one may (or may not) choose

to use a pooled scale estimate as in (7).

The denominator in (9) weights the estimated variances of the

statistics in the numerator according to the sample size. Such an

approach would not be reasonable if Var(T I) # Var(T 2 ). For such

unequal variance cases, we consider separate estimates of the

variance in an unborrowed denominator (cf. Welch's approach to the

Behrens-Fisher problem, Welch 1938):

1t.unborm[(T-T2)-(P -2)]/(S1 2 
+ S2

2
)1/

2 
, (10)

since the variance of the numerator may also be estimated by

S2 = S12+ S2
2 

" (11)

This distinction did not of course arise in Section 2, for then (8)

and (10) reduce to the same formula.

That the two forms of two-sample "t" do indeed have asymptotic
Gaussian distributions under the null hypothesis can be seen as

follows. Following the lines of the argument in Section 2.3, we

know that

Ui = 1ni(Ti-wi)[Eiy2/(Ei')
2
]
-
I/

2 
-2-+ N(0,1), i - 1,2 (12)

where the notation for the expectations is defined in (5).

Furthermore, if FI-F 2 , then the denominators in (12) are the same

for both samples, so
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02(n1,n2 ) Inj(nl-l)SI2+n2(n2-1)S2
2]/(n 1 +n2 -2) --. E,V2/(E') 2 .

Hence, we have that "t"bor may be written

t'bor = I(Ul/j - U2 //n2 )(nl-l+n-1)-I/
2 .[/E' 2 /(EV')2/(nl,n2)].

t= , [UIUn)11 2
/-- Ul~l+(nj/n2)j ~ I/2 - U2{1+(n2/nl))-1/2]-[/ET2/(EV')2/;(ni,n2)J.

If nlj- and n2 '- in such a way that nl/n 2 + K < ,

[1+(n 2/n)]-I/2 - (I+K)-/ 2 , [l+(n/n 2 )]-
1 /2 + (K/(I+K)II/2

Hence, using SIutsky's theorem in conjunction with the convergence

in distribution in (12), we conclude that "t"bor has an asymptotic

Gaussian distribution. If F * F2, then "t"unbo r is appropriate,

for which the proof is similar.

3..! Borrowin, versus unborrowing: scales and denominators.

When we no longer have equal sample sizes, we might he

cautious and prefer not to borrow estimates of either scale or

biweight -variance". We know that such a cautious procedure may be

quite wasteful of valuable information, especially when one sample

has only five observations. On the other hand, biweight variances

need not be the same for all distributions, and unwarranted

borrowing in such cases may prove misleading. In this section we

investigate the effects of various borrowing possibilities.

For the sake of brevity and for ease of comparison, we shall

limit our attention to the efficiency of biweight-"t" at a = .001

as representative of the behavior of "t" over the range .00001 < a

1 .05. Table III shows these results, where the denominator of "t"

is:

A) Sbor, borrowed scales: "complete borrowing";

B) Sbor, unborrowed scales: "incomplete borrowing",

C) Sunbor, unborrowed scales: "complete unborrowing".

When the distributions are the same, there is nearly always

advantage to complete borrowing, as seen most dramatically when

both underlying densities are Gaussian. In these cases, we may

again approximate the distribution of "t" by a Student's t with the
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Table IIIMatched degrees of freedom nd ECIL erticienc.es at A=.IJi ,

t r two-sample btweiht-"t": Cnequal sample sizes( )

Cor lo te incoap lete completeborrowing borrowin unborrowin, nominl,=. -- dT -- dL

6 1 2 ) 3.) 9u. 2 3 94.45 17.4 85.11 28
W l W 2 29. 92., 24.3 88.18 1o.8 7b.i 26
S Lo S -1 27.9 8. 2.7 73.75 31.1 6u.4 28

G 5 G 11) 14.5 93.7 n, 85.78 6.4 58.24 11
W 5 11) l1.o 7,. ) 1.9 65.40 6.3 37.72 13
S 5 S 1o 13.7 38..b 1C.9 330.41 5.5 211.06 13

G 5 G 2j '.1. 95.2 14. 83.92 4.7 32.06 23
W 5 W 2- 4.2 79.0 12.5 70.84 4.7 19.98 23

S S 23 t). 0 27. 3 it). 1 419.14 5.5 211.06 23

) F I  F2

G 10 W u33 40.1 9o.4 30.2 92.82 17.7 84.23 28G It) S t) - 92.1 o 82.20 3o.3 92.64 28
W 10 6 21t)3 23.3 91.b 21.1 88.84 16.2 75.46 28
W 13) _ 13 o 82.3 76.43 40.6 88.57 28
S Lu G 2)o 8.4 99.7 8.6 82.52 14.4 65.23 28
3 It W 20 9.u 99.9 9.1 33.94 16.9 6..84 28

o 5 W 1)0 13.9 87.8 0.7 78.16 6.6 59.28 13
G 5 S I3 59.0 77.1 53.2 64.57 11.6 75.53 13
W 5 0 1, 12.4 84.7 9.5 b7.34 6.0 35.29 i3
W 5 S i() 19.2 0o.4 28.1 33.78 9.8 52.81 13
S 5 G IQ I.9 14.7 -. 4 273.40 3.6 1u2. 15 13
S 5 W 1 1.9 11.5 4.o 267.82 3.7 1uj.87 13

G 5 W 2U 27.6 92.4 15.9 80.67 4.7 32.10 23
G 5 S 2u - 81.6 72.50 12.8 74.29 23
W 5 G 20 13.2 86.5 11.b 71.42 4.6 18.78 23
W 5 S 20 - 5o.4 W 56.30 11.8 48.96 23
S 5 G 2o 2.0 38.2 4.6 489.44 3.1 73.52 23
S 5 W 20 2.0 44.2 4.6 467.52 3.1 74.78 23

(1) Standard errors for critical points from which degrees of
freedomn were matched and ECIL efficiencies were calculated fell
in the range 0.028 to 0.331 for a = .OO.

(2) FJ represents underlyin9 distribution for sample j:
= Gaussian, W = One-Wild, S = Slash.

nominal degrees of freedoms. When the distributions are the same, a

conservative matching would be O.9(ndi). When one distribution is

.Slash, incomplete borrowing appears slightly more successful.

Finally, we remark -oat there are some cases for which 't' in

any of the three forms appears totally unsucces.ul (e.g., n=5

Slash, with anything else). This is primarily due to the nature of

small samples: there is a chance (about 57 in the Gaussian) that

one or two bonafide observaitions will occur far enough away from

the bulk of the data so as to be inappropriately downweighted by

any reasonably robust procedure. When the smaller sample is

I'
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restricted to be such that the sum of the biweight weights is high,

efficiencies on the biweight-'t' intervals are slightly higher than

those in Panel B. A solution may well depend on an appropriate use

of the weight distribution in these small samples.

4. UNEQUAL WIDTHS.

4.1 Unborrowed denominators.

When our samples have different scales, a Welch-like

unborrowed denominator of the form (11) is a safe (but conserva-

tive) approach. To evaluate the performance of biweight-'t" in the

presence of unequal widths, we multiply the observations of one of

the distributions by either V2 or 2, yielding "variance" ratios

between 2 and 4. A moderate difference in scales was chosen to

provide some indication of the effect in practical applications.

In Table IV, we show some trials of "tunbor either when

Fj*IF2 , nl=n2 or when FI=F 2 , nl*n 2. (As in Table III, only the

results for a - .001 are shown.) Notice that our previous matching

of the distribution to a Student's t on 0.8(ndf) for unpooled

scales would be conservative. This is similar to the conservative

nature of Welch's unborrowed t-statistic (e.g., as shown in Lee and

D'Agostino 1976, Welch 1938). Approximating the distribution of

t 1unbor by a Student's t on 0.9(ndf) instead, we see from Table IV

that the actual levels are still often less than half the nominal.

In terms of robustness of efficiency, however, ECIL efficiency

typically exceeds 50%.

As a final comment on the interval problem for samples of

varying widths, we mention the concept of transformation, a

familiar data analytic tool in such situations. When comparing

several batches of data, Tukey (1977, chapter 3,4) draws attention

to the importance of choosing a re-expression of the data for which

the amounts of spread are roughly the same across batches. Such

re-expression may be useful in dealing with the "unequal variances"

problem of this section. For example, Anscombe's (1948) variance

stabilizing transformations of Poisson data have been shown to

produce more similarity in spread. The results of biweight-"t"
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Table
Matched degrees of freedom and ECIL efficiency

for biweight-"t'" at a = .001: -ol" * 02 "

o 2 matched ECIL actual a (3)

1l(1)  a Z n - d.f. eff. n ominala

A) F1 =F 2

G 10 G N0 2 .(2) 90.90 .341
G 10 G 20 4 92.46 .038
W 10 W 20 2 - 82.94 .379
W 10 W 20 4 85.33 .045
S 10 S 20 2 - 262.61 .255
S 10 S 20 4 - 208.25 .073
G 20 G 10 2 7 72.46 .469
C 20 G 10 4 - 56.07 .286
W 20 W 10 2 * 62.26 .593
W 20 W 10 4 - 47.62 .474
S 20 S 10 2 224.64 .177
S 20 S 10 4 - 155.83 .030

B) F1 * F2

G 20 W 20 2 - 91.21 .127
G 20 W 20 4 - 85.55 .007
G 10 W 10 4 - 47.00 .533
G 20 S 20 2 57.22 .238
G 20 S 20 4 - 35.84 .038
W 10 S 10 2 - 57.20 .307

10 S t0 4 35.60 .038

(1) F3 represents underlying distribution for sample j:
G - Gaussian; W = One-Wild; S = Slash.

(2) Indicates that biweight-"t" distribution is shorter-tailed
than Gaussian.

(3) Actual a = P["t"bi" t.9(ndf)(.OOl)]; nominal a = .001.

discussed in Sections 2 and 3 (perhaps even the completely borrowed

"t") may than be applied successfully to such re-expressed data.

5. COMPARISON WITH CLASSICAL AND NONPARAMETRIC INTERVALS.

Many practicing statisticians are reluctant to compute robust

estimators or are satisfied with distribution-free methods. Even

among users of robust methods, there has been disagreement

concerning the efficiency of the biweight over robust estimators.

To compare the performance of biweight-"t" with Student's t, a

nonparametric and a Huber-type "t" interval, Table V presents the

results from a separate Monte Carlo study. For each run, 1000

Gaussian or One-Wild samples of size 5, 10, or 20 were generated.

Subroutine HH from Andrews et al. (1972) computed the Huber

location estimate, and its standard error was estimated via (3) but
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where Y(pi) was replaced by

TH(U) = u lu[ 1.5

1.5 lul > 1.5
Nonparametric intervals based on the Wilcoxun rank sum test ar

described in Lehma!iii (1975). Student's t, HuIhr--t, and biweight

--t" all used completely unborrowed denominators.

Table V reveals that Student's t is highl) inefticient when

even one of the samples is mildly contaminated (One-Wild, n=20);

biweight-"t" intervals dominate the nonparametric intervals

(sometimes by as much as 40Z) as well as the Huber-'t" intervals.

A constant of c-4 was also run for the biweight; effi&ciencies for

Table V

ECIL efficiencies for five differentIt"-confidence intervals

Student's Wilcoxon Huber Biweight Biweight
t k=l.5 c=6 c=4

G 20 'S 20

a=.05 61.6 93.3 87.0 94.6 91.9
a-.001 61.5 90.0 75.8 90.1 84.9
a-.00005 58.8 86.0 68.4 86.5 79.2

WI0 W 20

a-.05 39.2 84.3 77.9 87.7 87.4
a-.001 41.2 60.3 64.3 80.0 73.8
a=.00OU5 39.6 34.1 58.3 75.0 64.2

G 10 W 20

a=.05 67.1 91.0 82.5 92.5 88.9
a=.001 65.5 84.8 69.3 82.2 75.3
a=.00005 62.0 68.2 64.2 74.3 67.9

G oW 10

a-.05 48.9 86.0 80.1 89.8 88.1
a=.001 49.0 36.5 63.3 81.8 76.1
a-.00005 46.9 36.6 56.1 75.4 69.0

G 5 W 10

a-.05 54.6 79.4 71.5 84.2 79.9
-.o.001 52.5 36.7 51.9 66.6 60.0

a-.00005 49.0 - 45.4 61.3 53.7

G5 W5

a-.05 36.9 27.8 62.3 68.5 72.1
a-.001 33.1 - 42.8 56.6 49.2
a-.00005 30.2 39.9 53.4 43.0
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moderate contamination (41U4) are only slightly lower than when

c-b. The main message is that a robust "t" interval can lead to

large gains in efficiency in long-tailed, symmetric sitoations.

6. A'J APPLICATION AND CONCLUSIONS.

6.1 An Example for borrowed and unborrowed "t" intervals.

To gain some familiarity with the effect of borrowing scales

on biweight comfidence intervals, we calculate them for a set of

chemical measurements taken at the National Bureau of Standards.

These data coasist of the concentrations of polyclilorinated

biphenyl (PCB) in a motor oil solution as determined by gas

chromatography (in units of milligrams per kilogram of oil). Each

sample includes ten peak-by-peak comparisons of the oil fraction

chromatogram with the chromatogram of a known standard tixture.

The box plots of the data from four ampoules of solution are shown

in Figure 1. Notice that the underlying assumption of symmetry

u1-
X

z

0o 95-

90

F 2 3 4

FIG. 1. Box Plots of Data from PCB's in oil.
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does not seem unrealistic for these samples, and that some outliers

are evident from ampoul. 4.

While it appears that all four groups do not have a common

scale, one might reasonably borrow scales between batches I and 4.

If we are interested in all 6 pair-wise comparisons at the 95Z

level of confidence, each interval should be based on the 2.5%/b -

.4%-point of the "t" distribution (.9x18-16.2 d.f. for pooled

scales, .8x18 - 14.4 d.f. for unpoolea scales). The pooled scale

(7) between ampoules 1 and 4 is .988, from which biweights and

associated variance estimates may be calculated to give a

confidence interval of the form

(TI - T4 ) ± t1 6 .2(.004)(S12 + S4
2
)
1/ 2

f (99.468 - 106.858) ± (3.028)(.0706 + .176)1/2

- -7.390 t 1.504 = (-8.894, -5.886).

(The corresponding Student's t interval, (-9.220, -4.026), is 1.7

times wider.) An unborrowed confidence interval :or the difference

between ampoules 1 and 2 is

(99.468 - 103.357) ± t1 4 .4(.004)(.0706 + .587)1/2

- -3.889 t 2.493 = (-6.382, -1.396).

(Welch's (1949) unborrowed confidence interval, using the formula

for degrees of freedom on p. 295, is only trivially longer.) Com-

paring ampoules 2 and 4 gives a confidence interval of the form

(103.357 - 106.826) ± t14 .4 (.004)(.587 + .213)1/2

- -3.469 t 2.749 - (-6.218, -0.720).

This last comparison Illustrates the greater power in this

procedure over the classical Student's t interval (-6.203, 0.423),

which would not reject the hypothesis of a difference. (Had one

used a Welch interval, since the equal-variance hypothesis rejects

at level .10, it would have been even wider.)

These intervals do not represent the final data summary

because additional information on the measurement process permits

more accuracy in determining standard errors. For illustrative

purposes, however, this information has b n neglected.

6.2 Concluding comments for the two-sample case.

This study investigated the performance of a two-sample "t"
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statistic when classical sample means and variance are replaced by

their biweight counterparts. Although computationally more

difficult than Student's t, the popular use of computers makes this

disadvantage irrelevant. The primary advantage is that its

distribution can be well approximated by one from the Student's t

family, from which valid, yet efficient, confidence intervals for

the difference in centers can be made.

Appropriate scaling for biweight-"t" can be important. We can

choose to either pool estimates of scale (a wise move if in fact we

have common underlying situations), or use separate estimates

(slightly safer in cases of doubt). The distribution may be

matched to Student's t on .9(ndf) (out to .1%-point) in the former

case or .8(ndf) in the latter. In either case, the efficiency of

the procedure (in terms of relative length of the interval) is

upwards of 70%. The same applies when nl*n 2 , if we weight the

variance estimates proportional to their sample sizes ("borrowed"

denominator). Small samples sizes (n=5) pose a problem only when

the underlying population is extremely heavy-tailed (e.g., Slash).

A few trials of unborrowed denominators were run in situations

where the samples did not have common width. For the most part,

the 0.8(ndf) matching is quite conservative; .9(ndf) could be

safely recommended for all but perhaps the most extreme percent

points (.01% and beyond). When the underlying situations have the

same width, we have better than 60% efficiency out to the .5%

point. When the situations are different (either in distribution

or in width) , the efficiency decreases with the increased

difference in the distribution (in terms of the "heaviness" of the

tails).

While further insight into the nature of the weight

distribution may sugggest refinements, present results indicate

that we may feel confident in constructing two-sample biweight-"t"

intervals using tabulated Student's t percent points as outlined

above. A subsequent report will investigate the performance of

biweight-"t" when the underlying populations are unsymmetric.
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